\(\int \frac {(d+e x^2)^{5/2} (a+b \arctan (c x))}{x^4} \, dx\) [1200]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [F(-2)]
   Giac [F(-1)]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\frac {5}{2} a e^2 x \sqrt {d+e x^2}-\frac {5 a e \left (d+e x^2\right )^{3/2}}{3 x}-\frac {a \left (d+e x^2\right )^{5/2}}{3 x^3}+\frac {5}{2} a d e^{3/2} \text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )+b \text {Int}\left (\frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4},x\right ) \]

[Out]

-5/3*a*e*(e*x^2+d)^(3/2)/x-1/3*a*(e*x^2+d)^(5/2)/x^3+5/2*a*d*e^(3/2)*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))+5/2*a*
e^2*x*(e*x^2+d)^(1/2)+b*Unintegrable((e*x^2+d)^(5/2)*arctan(c*x)/x^4,x)

Rubi [N/A]

Not integrable

Time = 0.13 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx \]

[In]

Int[((d + e*x^2)^(5/2)*(a + b*ArcTan[c*x]))/x^4,x]

[Out]

(5*a*e^2*x*Sqrt[d + e*x^2])/2 - (5*a*e*(d + e*x^2)^(3/2))/(3*x) - (a*(d + e*x^2)^(5/2))/(3*x^3) + (5*a*d*e^(3/
2)*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/2 + b*Defer[Int][((d + e*x^2)^(5/2)*ArcTan[c*x])/x^4, x]

Rubi steps \begin{align*} \text {integral}& = a \int \frac {\left (d+e x^2\right )^{5/2}}{x^4} \, dx+b \int \frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4} \, dx \\ & = -\frac {a \left (d+e x^2\right )^{5/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4} \, dx+\frac {1}{3} (5 a e) \int \frac {\left (d+e x^2\right )^{3/2}}{x^2} \, dx \\ & = -\frac {5 a e \left (d+e x^2\right )^{3/2}}{3 x}-\frac {a \left (d+e x^2\right )^{5/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4} \, dx+\left (5 a e^2\right ) \int \sqrt {d+e x^2} \, dx \\ & = \frac {5}{2} a e^2 x \sqrt {d+e x^2}-\frac {5 a e \left (d+e x^2\right )^{3/2}}{3 x}-\frac {a \left (d+e x^2\right )^{5/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4} \, dx+\frac {1}{2} \left (5 a d e^2\right ) \int \frac {1}{\sqrt {d+e x^2}} \, dx \\ & = \frac {5}{2} a e^2 x \sqrt {d+e x^2}-\frac {5 a e \left (d+e x^2\right )^{3/2}}{3 x}-\frac {a \left (d+e x^2\right )^{5/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4} \, dx+\frac {1}{2} \left (5 a d e^2\right ) \text {Subst}\left (\int \frac {1}{1-e x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right ) \\ & = \frac {5}{2} a e^2 x \sqrt {d+e x^2}-\frac {5 a e \left (d+e x^2\right )^{3/2}}{3 x}-\frac {a \left (d+e x^2\right )^{5/2}}{3 x^3}+\frac {5}{2} a d e^{3/2} \text {arctanh}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )+b \int \frac {\left (d+e x^2\right )^{5/2} \arctan (c x)}{x^4} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 11.68 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx \]

[In]

Integrate[((d + e*x^2)^(5/2)*(a + b*ArcTan[c*x]))/x^4,x]

[Out]

Integrate[((d + e*x^2)^(5/2)*(a + b*ArcTan[c*x]))/x^4, x]

Maple [N/A] (verified)

Not integrable

Time = 0.52 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.91

\[\int \frac {\left (e \,x^{2}+d \right )^{\frac {5}{2}} \left (a +b \arctan \left (c x \right )\right )}{x^{4}}d x\]

[In]

int((e*x^2+d)^(5/2)*(a+b*arctan(c*x))/x^4,x)

[Out]

int((e*x^2+d)^(5/2)*(a+b*arctan(c*x))/x^4,x)

Fricas [N/A]

Not integrable

Time = 0.28 (sec) , antiderivative size = 64, normalized size of antiderivative = 2.78 \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {5}{2}} {\left (b \arctan \left (c x\right ) + a\right )}}{x^{4}} \,d x } \]

[In]

integrate((e*x^2+d)^(5/2)*(a+b*arctan(c*x))/x^4,x, algorithm="fricas")

[Out]

integral((a*e^2*x^4 + 2*a*d*e*x^2 + a*d^2 + (b*e^2*x^4 + 2*b*d*e*x^2 + b*d^2)*arctan(c*x))*sqrt(e*x^2 + d)/x^4
, x)

Sympy [N/A]

Not integrable

Time = 42.00 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.96 \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\int \frac {\left (a + b \operatorname {atan}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{\frac {5}{2}}}{x^{4}}\, dx \]

[In]

integrate((e*x**2+d)**(5/2)*(a+b*atan(c*x))/x**4,x)

[Out]

Integral((a + b*atan(c*x))*(d + e*x**2)**(5/2)/x**4, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x^2+d)^(5/2)*(a+b*arctan(c*x))/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\text {Timed out} \]

[In]

integrate((e*x^2+d)^(5/2)*(a+b*arctan(c*x))/x^4,x, algorithm="giac")

[Out]

Timed out

Mupad [N/A]

Not integrable

Time = 1.35 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {\left (d+e x^2\right )^{5/2} (a+b \arctan (c x))}{x^4} \, dx=\int \frac {\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )\,{\left (e\,x^2+d\right )}^{5/2}}{x^4} \,d x \]

[In]

int(((a + b*atan(c*x))*(d + e*x^2)^(5/2))/x^4,x)

[Out]

int(((a + b*atan(c*x))*(d + e*x^2)^(5/2))/x^4, x)